10 research outputs found

    A penalty approach to a discretized double obstacle problem with derivative constraints

    Get PDF
    This work presents a penalty approach to a nonlinear optimization problem with linear box constraints arising from the discretization of an infinite-dimensional differential obstacle problem with bound constraints on derivatives. In this approach, we first propose a penalty equation approximating the mixed nonlinear complementarity problem representing the Karush-Kuhn-Tucker conditions of the optimization problem. We then show that the solution to the penalty equation converges to that of the complementarity problem with an exponential convergence rate depending on the parameters used in the equation. Numerical experiments, carried out on a non-trivial test problem to verify the theoretical finding, show that the computed rates of convergence match the theoretical ones well

    An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering

    Get PDF
    In this work we study an interior penalty method for a finite-dimensional large-scale linear complementarity problem (LCP) arising often from the discretization of stochastic optimal problems in financial engineering. In this approach, we approximate the LCP by a nonlinear algebraic equation containing a penalty term linked to the logarithmic barrier function for constrained optimization problems. We show that the penalty equation has a solution and establish a convergence theory for the approximate solutions. A smooth Newton method is proposed for solving the penalty equation and properties of the Jacobian matrix in the Newton method have been investigated. Numerical experimental results using three non-trivial test examples are presented to demonstrate the rates of convergence, efficiency and usefulness of the method for solving practical problems

    A power penalty approach to a discretized obstacle problem with nonlinear constraints

    No full text
    A novel power penalty method is proposed to solve a nonlinear obstacle problem with nonlinear constraints arising from the discretization of an infinite-dimensional optimization problem. This approach is based on the formulation of a penalty equation approximating the mixed nonlinear complementarity problem arising from the Karush–Kuhn–Tucker conditions of the optimization problem. We show that the solution to the penalty equation converges to that of the complementarity problem with an exponential convergence rate depending on the parameters used in the penalty equation. Numerical experiments are performed to confirm the theoretical convergence rate established

    A numerical method for pricing European options with proportional transaction costs

    No full text
    In the paper,we propose a numerical technique based on a finite difference scheme in space and an implicit time-stepping scheme for solving the Hamilton–Jacobi–Bellman (HJB) equation arising from the penalty formulation of the valuation ofEuropean options with proportional transaction costs. We show that the approximate solution from the numerical scheme converges to the viscosity solution of the HJB equation as the mesh sizes in space and time approach zero. We also propose an iterative scheme for solving the nonlinear algebraic system arising from the discretization and establish a convergence theory for the iterative scheme. Numerical experiments are presented to demonstrate the robustness and accuracy of the method

    Current Aspects of Metal Resistant Bacteria in Bioremediation: From Genes to Ecosystem

    No full text
    corecore